ライブラリー > Threshold Structure-Preserving Signatures
Threshold Structure-Preserving Signatures
December/2023, Asiacrypt '23
Structure-preserving signatures (SPS) are an important building block for privacy-preserving cryptographic primitives, such as electronic cash, anonymous credentials, and delegatable anonymous credentials. In this work, we introduce the first threshold structure-preserving signature scheme (TSPS). This allows multiple parties to jointly sign a message, resulting in a standard, single-party SPS signature, and can thus be used as a replacement for applications based on SPS.
We begin by defining and constructing SPS for indexed messages, which are messages defined relative to a unique index. We prove its security in the random oracle model under a variant of the generalized Pointcheval-Sanders assumption (PS). Moreover, we generalize this scheme to an indexed multi-message SPS for signing vectors of indexed messages, which we prove secure under the same assumption. We then formally define the notion of a TSPS and propose a construction based on our indexed multi-message SPS. Our TSPS construction is fully non-interactive, meaning that signers simply output partial signatures without communicating with the other signers. Additionally, signatures are short: they consist of 2 group elements and require 2 pairing product equations to verify. We prove the security of our TSPS under the security of our indexed multi-message SPS scheme. Finally, we show that our TSPS may be used as a drop-in replacement for UC-secure Threshold-Issuance Anonymous Credential (TIAC) schemes, such as Coconut, without the overhead of the Fischlin transform.